No Image

Чем тиристор отличается от транзистора

0 просмотров
11 марта 2020

Рассмотрим устройство и работу других полупроводниковых приборов. Полупроводниковые приборы, имеющие три слоя полупроводников, разделенных двумя запирающими слоями, и три электрода, называют триодами, или чаще транзисторами. (От английских слов transfer — передача и resistor — сопротивление, т. е. транзистор — передающее сопротивление). Один из видов транзисторов, схема которого показана на рис. 235, а, представляет собой тонкую пластинумонокристаллического германия с вплавленными в нее с двух сторон столбиками из индия.

Рис. 235. Схемы транзисторов и их условные обохначения:
а — транзистор типа p-n-p; б — транзистор типа n-p-n

В пластине германия на границе с индием образуются два р-n перехода, обладающих запирающими свойствами. Следовательно, германиевый триод состоит из крайних слоев с р-проводимостыо и среднего с n-проводимостью. Такой прибор получил название транзистора типа p-n-р. К каждому слою присоединяют электроды — вывод для соединения с внешней цепью.
Соберем электрическую схему, показанную на рис. 235, а. Один из крайних слоев транзистора (левый) соединим с источником постоянного тока в проводящем направлении его перехода. Этот слой при работе прибора является основным источником носителей электрических зарядов и получил название эмиттера. (От латинского слова emittere — испускать, излучать) . Средний слой германиевой пластины с n-проводимостью называют базой. Второй крайний слой транзистора соединим с другим источником постоянного тока в непроводящем направлении прилегающего к нему перехода.
Носители заряда, испускаемые эмиттером, проходят через базу, переход р-n и поступают в слой коллектора.(От латинского слова collector — собирающий) .Таким образом, коллектор является собирателем носителей заряда, обеспечивающих прохождение тока в цепи второго источника тока. При этом источник электрической энергии в цепи коллектора имеет э.д.с. Ек, которая во много раз превосходит э.д.с. Еэ источника энергии в цепи эмиттера. Небольшая э.д.с. Еэ вполне достаточна для создания тока необходимого значения в цепи эмиттера, так как прямое сопротивление его перехода является ничтожным. При отсутствии тока эмиттера практически не будет протекать ток и в цепи коллектора из-за большого обратного сопротивления перехода в ней. Если с помощью регулируемого резистора увеличивать ток Iэ в цепи эмиттера, то возрастает число носителей заряда, испускаемых эмиттером, и повышается сила тока Iк в цепи коллектора. Иными словами, с увеличением тока эмиттера снижается электрическое сопротивление коллекторного перехода. Поэтому с помощью маломощной входной цепи эмиттера легко управлять значительно более мощной выходной цепью коллектора. Электрическая мощность этих цепей пропорциональна э.д.с. их источников энергии.
В рассмотренной схеме база транзистора является общей для цепей эмиттера и коллектора, а сам транзистор представляет собой полупроводниковый усилитель мощности.
В электрических схемах находят применение и два других способа включения транзистора: с общим эмиттером и общим коллектором, в зависимости от того, какой электрод транзистора является общим для входной и выходной электрических цепей. Например, схема с общим эмиттером обеспечивает наибольшее усиление по току в выходной цепи.
Кремниевые транзисторы изготавливаются в виде триодов типа n-р-n. Средний слой транзистора состоит из монокристаллического кремния с р-проводимостью, два крайних слоя имеют n-проводимость. Поскольку проводящие направления переходов при этом изменились на противоположные по сравнению с транзистором типа р-п-р, то необходимо изменить и полярность включения источников электроэнергии во входной и выходной цепях (рис. 235, б). Устройство мощного кремниевого транзистора показано на рис. 236.

Рис. 236. Кремниевый транзистор:
а — продольный разрез; б — общий вид

Способы использования германиевых и кремниевых транзисторов являются одинаковыми, изменяется лишь схема их включения в электрические цепи с учетом полярности источников энергии.
Тиристором называется полупроводниковый прибор, состоящий из четырех слоев полупроводников, разделенных тремя р-n переходами (рис. 237). Входной электрод тиристора называют анодом, выходной -— катодом. Полупроводниковый слой, к которому присоединен электрод управляющего тока, составляет, как и в транзисторе — базу. Проводящее направление тиристора — от анода к катоду. Поэтому тиристор своим анодом соединяется с плюсовым зажимом источника тока, катод — с минусовым. При этом средний переход П2 включен в непроводящем направлении.

Читайте также:  Анекдот про смородину красную

Рис. 237. Тиристор:
а — общий вид; б- продольный разрез; в — схема; г — условное обозначение

Тиристор, как и обычный диод, практически не пропускает ток внешней цепи, или говорят — тиристор заперт. Повышая приложенное к тиристору внешнее напряжение, можно достигнуть критического его значения, когда происходит лавинный пробой перехода и тиристор отпирается. Во внешней цепи протекает большой силы ток, ограничиваемый лишь ее сопротивлением. Для правильно сконструированного тиристора лавинный пробой и большая сила тока не представляют опасности, так как энергия, выделяющаяся в переходе П2, весьма мала. При изменении направления входного напряжения на обратное происходит восстановление первоначальных свойств перехода П2, и тиристор запирается. Обратное напряжение делится поровну между переходами П1 и П73, поэтому их пробоя не происходит, и тиристор практически не пропускает обратного тока. При подаче напряжения на управляющий электрод базы появляется ток управления, цепь которого замыкается через катод. Регулируя величину тока управления можно в широких пределах изменять значение напряжения, при котором тиристор открывается.
Таким образом, тиристор является управляемым полупроводниковым вентилем.
Мощность, расходуемая в цепи управления тиристором, составляет 1—2 Вт, а мощность силовой цепи достигает нескольких сотен киловатт. Поэтому тиристор представляет собой преобразователь с высоким коэффициентом полезного действия. Тиристор обладает почти мгновенным быстродействием, надежен при высокой частоте срабатываний. Применение тиристоров позволило создать электрические устройства для управляемого выпрямления переменного тока, преобразования постоянного тока в переменный или частоты переменного тока.
Тиристорными преобразователями оборудованы опытные, тепловозы для регулирования частоты тока, питающего асинхронные тяговые электродвигатели, с целью изменения скорости движения поезда. Тиристоры широко используются в самых различных устройствах автоматики современных тепловозов.

Транзисторы – распространенные полупроводниковые радиоэлементы. На их основе делают большинство электронных схем, а также микросхем. Главное их свойство – способность усиливать электрические сигналы. Изменяя слабый сигнал на управляющем электроде транзистора, можно управлять усиленным выходным сигналом. Есть еще довольно распространенный вид полупроводниковых радиоэлементов — тиристоры. Они тоже имеют управляющий электрод, но управление выходным сигналом в принципе отличается от транзисторов. В этой небольшой статье путем сравнения рассмотрены эти различия.

За основу возьмем простую схему с лампочкой. Коммутируя малый ток в цепи управляющего электрода будем управлять в разы большим током лампочки.

Вот как выглядит эта схема на транзисторе и на тиристоре:

Рассмотрим, как можно управлять свечением лампочки в схеме на транзисторе. При наличии питания и замыкании выключателя S1 на управляющий электрод транзистора (базу) будет подано отпирающее напряжение и при условии достаточной величины тока (определяется величиной сопротивления в базе) транзистор откроется, лампочка загорится.

Изменяя величину тока в базе с помощью переменного сопротивления, мы можем открывать транзистор больше или меньше, меняя таким образом яркость свечения лампочки. Последовательно с переменным сопротивлением стоит постоянное для того, чтобы при нулевом сопротивлении переменного сопротивления ток базы не превысил допустимое значение и транзистор не вышел из строя. Выключить лампочку мы можем, разомкнув выключатель S1.

Теперь рассмотрим, как можно управлять свечением лампочки в схеме, выполненной на тиристоре.

Читайте также:  Соединение деталей 6 букв сканворд

При наличии питания и замыкании выключателя S2 на управляющий электрод тиристора будет подано отпирающее напряжение и при условии достаточной величины тока (определяется величиной сопротивления в цепи управляющего электрода) тиристор откроется, лампочка загорится. А вот теперь главное отличие. Мы не можем изменять яркость лампочки изменяя сопротивление в цепи управляющего электрода. Более того, мы можем вообще разомкнуть выключатель S2 и лампочка будет светиться, но только в том случае, если ток лампочки протекающий через открытый тиристор будет больше определенного значения, называемого током удержания. Он у каждого типа тиристора свой. Чем мощнее тиристор, тем большее значение тока удержания. Погасить лампочку мы можем, только уменьшив ток через анод-катод тиристора до значения меньше тока удержания или разомкнув выключатель S3 (что равносильно току удержания равном 0).

Это главная особенность применения тиристоров и главное их отличие от транзисторов.

Другими словами, тиристор может быть или полностью открыт, или полностью закрыт. Это и достоинство, и недостаток. Достоинство в том, что падение напряжения небольшое и потери ниже, чем, например, у наполовину открытого транзистора. Недостаток в том, что схема управления усложняется.

Тиристоры проще использовать в цепях переменного тока. Мы должны открывать тиристор каждую полуволну при ее нарастании. Когда полуволна спадает, тиристор сам закроется. Задерживая время открывания при приходе полуволны, мы меняем время открытого состояния тиристора и, следовательно, значение тока в нагрузке.

Как пример, рассмотрим питание схемы на тиристоре от источника переменного напряжения.

Теперь, при замыкании выключателя лампочка будет гореть, а при размыкании, гаснуть. Как видно из осциллограммы, каждую полуволну, в ее конце ток приближается к 0. Если выключатель S2 разомкнут, то с приходом новой полуволны тиристор не откроется.

Тиристоры целесообразно использовать в цепях переменного или импульсного напряжения (тока). При этом на управляющий электрод достаточно подать короткий отпирающий импульс. Закроется тиристор сам, после окончания импульса в нагрузке. При приходе следующего импульса в нагрузке на управляющий электрод снова нужно подавать отпирающий импульс и так далее.

Материал статьи продублирован на видео:

Тиристоры относятся к полупроводниковым приборам структуры p-n-p-n, и принадлежат, по сути, к особому классу биполярных транзисторов, четырехслойных, трех (и более) переходных приборов с чередующейся проводимостью.

Устройство тиристора позволяет ему работать подобно диоду, то есть пропускать ток лишь в одном направлении.

И также как у полевого транзистора, у тиристора имеется управляющий электрод. При этом как диод, тиристор имеет особенность, — без инжекции неосновных рабочих носителей заряда через управляющий электрод он не перейдет в проводящее состояние, то есть не откроется.

Упрощенная модель тиристора позволяет нам понять, что управляющий электрод здесь аналогичен базе биполярного транзистора, однако имеется ограничение, которое заключается в том, что отпереть то тиристор с помощью этой базы можно, а вот запереть нельзя.

Тиристор, как и мощный полевой транзистор, конечно может коммутировать значительные токи. И в отличие от полевых транзисторов, мощности, коммутируемые тиристорами, могут исчисляться мегаваттами при высоких рабочих напряжениях. Но имеют тиристоры один серьезный недостаток — значительное время выключения.

Для того чтобы запереть тиристор, необходимо прервать или сильно уменьшить его прямой ток на достаточно продолжительное время, за которое неравновесные основные рабочие носители заряда, электронно-дырочные пары, успели бы рекомбинировать или рассосаться. Пока не прерван ток, тиристор будет оставаться в проводящем состоянии, то есть будет продолжать вести себя как диод.

Схемы коммутации переменного синусоидального тока обеспечивают тиристорам подходящий режим работы — синусоидальное напряжение смещает переход в обратном направлении, и тиристор автоматически запирается. Но для поддержания работы прибора, на управляющий электрод необходимо в каждом полупериоде подавать отпирающий управляющий импульс.

Читайте также:  P n переход для чайников

В схемах с питанием на постоянном токе прибегают к дополнительным вспомогательным схемам, функция которых — принудительно снизить анодный ток тиристора, и вернуть его в запертое состояние. А поскольку при запирании рекомбинируют носители заряда, то и скорость переключения тиристора сильно ниже, чем у мощного полевого транзистора.

Если сравнить время полного закрытия тиристора с временем полного закрытия полевого транзистора, то разница достигает тысяч раз: полевому транзистору чтобы закрыться нужно несколько наносекунд (10-100 нс), а тиристору требуется несколько микросекунд (10-100 мкс). Почувствуйте разницу.

Конечно, есть области применения тиристоров, где полевые транзисторы не выдерживают конкуренции с ними. Для тиристоров практически нет ограничений в предельно допустимой коммутируемой мощности — это их преимущество.

Тиристоры управляют мегаваттами мощности на больших электростанциях, в промышленных сварочных аппаратах они коммутируют токи в сотни ампер, а также традиционно управляют мегаваттными индукционными печами на сталелитейных заводах. Здесь полевые транзисторы никак не применимы. В импульсных же преобразователях средней мощности полевые транзисторы выигрывают.

Долгое выключение тиристора, как говорилось выше, объясняется тем, что будучи включенным, он требует для выключения снятия коллекторного напряжения, и подобно биполярному транзистору, у тиристора уходит конечное время на рекомбинацию или удаление неосновных носителей.

Проблемы, которые вызывают тиристоры в связи с этой своей особенностью, связаны прежде всего с невозможностью переключения с высокими скоростями, как это могут делать полевые транзисторы. А еще перед подачей на тиристор коллекторного напряжения, тиристор должен обязательно быть закрытым, иначе неизбежны коммутационные потери мощности, полупроводник чрезмерно при этом нагреется.

Иначе говоря, предельное dU/dt ограничивает быстродействие. График зависимости рассеиваемой мощности от тока и времени включения иллюстрирует эту проблему. Высокая температура внутри кристалла тиристора может не только вызвать ложное срабатывание, но и помешать переключению.

В резонансных инверторах на тиристорах проблема запирания решается сама собой, там выброс напряжения обратной полярности приводит к запиранию тиристора, при условии, что воздействие это достаточно длительное.

Так выявляется главное преимущество полевых транзисторов перед тиристорами. Полевые транзисторы способны работать на частотах в сотни килогерц, и управление сегодня не является проблемой.

Тиристоры же будут надежно работать на частотах до 40 килогерц, ближе к 20 килогерцам. Это значит, что если бы в современных инверторах использовались тиристоры, то аппараты на достаточно высокую мощность, скажем, на 5 киловатт, получались бы весьма громоздкими.

В этом смысле полевые транзисторы способствуют тому, что инверторы получаются более компактными за счет меньшего размера и веса сердечников силовых трансформаторов и дросселей.

Чем выше частота, тем меньшего размера требуются трансформаторы и дроссели для преобразования одной и той же мощности, это знает каждый, кто знаком со схемотехникой современных импульсных преобразователей.

Безусловно, в некоторых применениях тиристоры оказываются очень полезными, например диммеры для регулировки яркости света, работающие на сетевой частоте 50 Гц, в любом случае выгоднее изготавливать на тиристорах, они получаются дешевле, чем если бы там применялись полевые транзисторы.

А в сварочных инверторах, например, выгоднее использовать полевые транзисторы, именно в силу простоты управления переключением и высокой скорости этого переключения. Кстати, при переходе с тиристорной схемы на транзисторную, несмотря на большую стоимость последних, из приборов исключаются лишние дорогостоящие компоненты.

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Строительство
0 комментариев
Adblock detector