No Image

Явление возникновения электрического тока в замкнутом контуре

0 просмотров
11 марта 2020

1.1

Механическое движение

Механическое движение-это процесс изменения положения тела в пространстве с течением времени относительно другого тела, которое мы считаем неподвижным.

Тело, условное принятое за неподвижное- тело отсчета.

Тело отсчета-это тело, относительно которого определяется положение другого тела.

Система отсчета -это тело отсчета, система координат, жестко связанная с ним, и прибор для измерения времени движения.

Траектория движения

Траектория движения тела -это непрерывная линия, которую описывает движущееся тело(рассматриваемое как материальная точка) по отношению к выбранной системе отсчета.

Пройденный путь

Пройденный путь -скалярная величина, равная длине дуги траектории, пройденной телом за некоторое время.

Перемещение

Перемещением тела называют направленный отрезок прямой, соединяющий начальное положение тела с его последующим положением, векторная величина.

Средняя и мгновенная скорости движения.Направление и модуль скорости.

Скорость— физическая величина, которая характеризует быстроту изменения координаты.

Средняя скорость движения это физическая величина, равная отношению вектора перемещения точки к интервалу времени, за которое это перемещение произошло. Направление вектора средней скорости совпадает с направлением вектора перемещения ∆S

Мгновенная скорость -это физическая величина, равная пределу, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени ∆t. Вектор мгновенной скорости направлен по касательной к траектории. Модуль равен первой производной пути по времени.

Формула пути при равноускоренном движении.

Равноускоренное движениеэто движение, при котором ускорение постоянно по модулю и направлению.

2.10.

Электромагнитная индукция.

Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Опыты Фарадея. Объяснение электромагнитной индукции.

Если подносить постоянный магнит к катушке или наоборот (рис.3.1), то в катушке возникнет электрический ток. То же самое происходит с двумя близко расположенными катушками: если к одной из катушек подключить источник переменного тока, то в другой также возникнет переменный ток , но лучше всего этот эффект проявляется, если две катушки соединить сердечником

По определению Фарадея общим для этих опытов является следующее: если поток вектора индукции, пронизывающий замкнутый, проводящий контур, меняется, то в контуре возникает электрический ток.

Это явление называют явлением электромагнитной индукции, а ток – индукционным. При этом явление совершенно не зависит от способа изменения потока вектора магнитной индукции.

Формула э.д.с. электромагнитной индукции.

ЭДС индукции в замкнутом контуре прямо пропорциональна скорости изменения магнитного потока через площадь, ограниченную этим контуром.

Правило Ленца.

Правило Ленца

Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует изменению магнитного потока, которым он вызван.

1.10.

Кинетическая энергия тела; ее связь с работой силы.

Кинетическая энергия — энергия движущегося тела. По определению кинетическая энергия покоящегося в данной системе отсчета тела обращается в ноль.

Изменение кинетической энергии тела (материальной точки) за некоторый промежуток времени равно работе, совершенной силой, действующей на тело, за этот же промежуток времени

Кинетическая энергия поступательного и вращательного движения твердого тела.

Поступательное движение. В этом случае все точки тела движутся с одинаковыми скоростями, равными скорости дви­жения центра масс. То есть, для любой точки Vi=VC

Таким образом,кинетическая энергия тела при поступатель­ном движении равна половине произведения массы тела на квад­рат скорости центра масс. От направления движения значение Т не зависит.

Вращательное движение. Если тело вращается вокруг какой-нибудь оси Оz , то скорость любой его точки где — расстояние точки от оси вращения, а — угло­вая скорость тела. Подставляя это значение и вынося общие множители за скобку, получим:

Величина, стоящая в скобке, представляет собою момент инерции тела относительно оси z. Таким образом, окончательно найдем:

2.8.

Магнитное взаимодействие.

Магнитное взаимодействие — это взаимодействие упо­рядочение движущихся электричес­ких зарядов.

Магнитное поле.

Магнитное поле — это особый вид материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.

Читайте также:  Как заправляется картридж лазерного принтера

Сила Лоренца и сила Ампера.

Сила Лоренца – сила, действующая со стороны магнитного поля на движущийся со скоростью положительный заряд (здесь – скорость упорядоченного движения носителей положительного заряда). Модуль лоренцевой силы:

Сила Ампера— это сила, с которой магнитное поле действует на проводник с током.

Модуль силы Ампера равен произведению силы тока в проводнике на модуль вектора магнитной индукции, длину проводника и синус угла между вектором магнитной индукции и направлением тока в проводнике.

Сила Ампера максимальна, если вектор магнитной индукции перпендикулярен проводнику.

Если вектор магнитной индукции параллелен проводнику, то магнитное поле не оказывает никакого действия на проводник с током, т.е. сила Ампера равна нулю.

Направление силы Ампера определяется по правилу левой руки.

Индукция и напряженность магнитного поля.

Магнитная индукция-векторная физическая величина, характеризующая магнитное поле. Вектор магнитной индукции всегда направлен по касательной к магнитной линии

Дата добавления: 2017-02-25 ; просмотров: 509 | Нарушение авторских прав

А) Электростатическая индукция
Б) явление намагничивания
В) сила Ампера
Г) сила Лоренца
Д) электролиз
Е) электромагнитная индукция

2. Каким из приведенных ниже выражений определяется магнитный поток?
А) BS cos α
Б) ΔΦ/Δt
В) qvB sin α
Г) qvBI
Д) IBl sin α

3. Единицей измерения какой физической величины является 1 вебер?
А) индукция магнитного поля
Б) электроемкость
В) самоиндукции
Г) магнитного потока
Д) индуктивности

4. Как называется единица измерения индуктивности?
А) Тесла
Б) Вебер
В) Гаусс
Г) Фарад
Д) Генри

5. Каким выражением определяется связь энергии магнитного потока в контуре с индуктивностью L контура и силой тока I в контуре?
А)LI/t
Б) LI2/2
В) LI2
Г) L∆I/∆t
Д) LI

6. Какая физическая величина х определяется выражением х= -ΔΦ/Δt?
А) ЭДС индукции
Б) магнитный поток
В) индуктивность
Г) ЭДС самоиндукции
Д) энергия магнитного поля
Е) магнитная индукция

7. Контур площадью 200 см2 находится в однородном магнитном поле с индукцией 0,5 Тл, угол между вектором В индукции и нормалью к поверхности контура 600. Каков магнитный поток через контур?

8. Ток 4 А создает в контуре магнитный поток 20мВб.Какова индуктивность контура?

9.Магнитный поток через контур за 0,5 с равномерно уменьшился от 10 мВб до 0 Вб. Каково значение ЭДС в контуре в это время?

10. Каково значение энергии магнитного поля катушки индуктивностью 500 мГн при силе тока в ней 4 А?

11. Самолет летит со скоростью 1800 км/ч, модуль вертикальной составляющей вектора индукции магнитного поля Земли 4*10-5 Тл. Какова разность потенциалов между концами крыльев самолета, если размах крыльев равен 25 м?

Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величинаэлектродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.

. Будучи мгновенными, моментально исчезая вслед за своим появлением, индуктивные токи не имели бы никакого практического значения, если бы Фарадей не нашел способ при помощи остроумного приспособления (коммутатора) беспрестанно прерывать и снова проводить первичный ток, идущий от батареи по первой проволоке, благодаря чему во второй проволоке беспрерывно возбуждаются все новые и новые индуктивные токи, становящиеся, таким образом, постоянными. Так был найден новый источник электрической энергии, помимо ранее известных (трения и химических процессов), — индукция, и новый вид этой энергии — индукционное электричество.

В 1820 г.Ганс Христиан Эрстедпоказал, что протекающий по цепи электрический ток вызывает отклонение магнитной стрелки. Если электрический ток порождает магнетизм, то с магнетизмом должно быть связано появление электрического тока. Эта мысль захватила английского ученого М. Фарадея. «Превратить магнетизм в электричество», — записал он в 1822 г. в своём дневнике. Многие годы настойчиво ставил он различные опыты, но безуспешно, и только 29 августа1831 г. наступил триумф: он открыл явление электромагнитной индукции. Установка, на которой Фарадей сделал своё открытие, заключалась в том, что Фарадей изготовил кольцо из мягкого железа примерно 2 см шириной и 15 см диаметром и намотал много витков медной проволоки на каждой половине кольца. Цепь одной обмотки замыкала проволока, в её витках находилась магнитная стрелка, удаленная настолько, чтобы не сказывалось действие магнетизма, созданного в кольце. Через вторую обмотку пропускался ток от батареи гальванических элементов. При включении тока магнитная стрелка совершала несколько колебаний и успокаивалась; когда ток прерывали, стрелка снова колебалась. Выяснилось, что стрелка отклонялась в одну сторону при включении тока и в другую, когда ток прерывался. М. Фарадей установил, что «превращать магнетизм в электричество» можно и с помощью обыкновенного магнита.

Читайте также:  Температура для роста капусты

№26

.

СИЛОВЫ́Е ЛИ́НИИ,-это линии, проведенные в каком-либо силовом поле (см. СИЛОВОЕ ПОЛЕ) (электрическом, магнитном, гравитационном), касательные к которым в каждой точке поля совпадают по направлению с вектором, характеризующим данное поле (вектор напряженности(см. НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ) электрического или гравитационного полей, вектор магнитной индукции (см. МАГНИТНАЯ ИНДУКЦИЯ)). Силовые линии — только наглядный способ изображения силовых полей. Впервые понятие «силовые линии» для электрических и магнитных полей ввел М.Фарадей (см. ФАРАДЕЙ Майкл).
Так как напряженности полей и магнитная индукция — однозначные функции точки, то через каждую точку пространства может проходить только одна силовая линия. Густота силовых линий обычно выбирается так, чтобы число силовых линий, пересекающих единичную площадку, перпендикулярную к силовым линиям, было пропорционально напряженности поля (или магнитной индукции) на этой площадке. Т. о., силовые линии дают наглядную картину распределения поля в пространстве, характеризуя величину и направление напряженности поля.
Силовые линии электростатического поля (см. ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ) всегда незамкнуты: они начинаются на положительных зарядах и оканчиваются на отрицательных (или уходят на бесконечность). Силовые линии нигде не пересекаются, так как в каждой точке поля его напряженность имеет одно единственное значение и определенное направление. Густота силовых линий больше вблизи заряженных тел, где напряженность поля больше.
Силовые линии электрического поля в пространстве между двумя положительными зарядами расходятся; можно указать нейтральную точку, в которой поля сил отталкивания обоих зарядов гасят друг друга.
Силовые линии одиночного заряда представляют собой радиальные прямые, которые расходятся от заряда лучами, подобно силовым линиям гравитационного поля точечной массы или шара. Чем дальше от заряда, тем меньше густота линий — это иллюстрирует ослабление поля с увеличение расстояния.
Силовые линии, исходящие от заряженного проводника неправильной формы, сгущаются вблизи любого выступа или острия, вблизи вогнутостей или полостей густота силовых линий уменьшается.
Если силовые линии исходят от положительно заряженного острия, находящегося вблизи отрицательно заряженного плоского проводника, то они сгущаются вокруг острия, где поле очень сильное, и расходятся в большую область вблизи плоскости, на которой оканчиваются, входя в плоскость перпендикулярно.
Электрическое поле в пространстве между параллельными заряженными пластинами однородно. Линии напряженности в однородном электрическом поле параллельны друг другу.
Если в силовое поле попадает частица, например электрон, то он под действием силового поля приобретает ускорение, и направление его движения не может точно следовать по направлению силовых линий, он будет двигаться в направлении вектора количества движения.
Магнитное поле (см. МАГНИТНОЕ ПОЛЕ) характеризуют линии магнитной индукции, в любой точке которых вектор магнитной индукции направлен по касательной.
Линии магнитной индукции магнитного поля прямого проводника с током представляют собой окружности, лежащие в плоскостях, перпендикулярных проводнику. Центры окружности находятся на оси проводника. Силовые линии вектора магнитной индукции всегда замкнуты, т. е. магнитное поле является вихревым. Железные опилки, помещенные в магнитное поле, выстраиваются вдоль силовых линий; благодаря этому можно экспериментально определять вид силовых линий магнитной индукции. Вихревое электрическое поле, порождаемое изменяющимся магнитным полем, также имеет замкнутые силовые линии.

Читайте также:  Как подобрать пильный диск

№27

Максвелл заложил основы современнойклассической электродинамики (уравнения Максвелла), ввёл в физику понятия тока смещения и электромагнитного поля, получил ряд следствий из своей теории (предсказание электромагнитных волн, электромагнитная природа света, давление света и другие). Он является одним из основателей кинетической теории газов, установил распределение молекул газа по скоростям (распределение Максвелла). Максвелл одним из первых ввёл в физику статистические представления, показал статистическую природу второго начала термодинамикидемон Максвелла»), получил ряд важных результатов в молекулярной физике и термодинамике (термодинамические соотношения Максвелла, правило Максвелла для фазового перехода жидкость — газ и другие). Он является пионером количественной теории цветов, автором принципа цветной фотографии. Среди других работ Максвелла — исследования по устойчивости колец Сатурна, теории упругости и механике (фотоупругость, теорема Максвелла), оптике, математике. Он подготовил к публикации рукописи работ Генри Кавендиша, много внимания уделял популяризации науки, сконструировал ряд научных приборов.

№28

Экспериментальное подтверждение Герцем теории Максвелла
Первое экспериментальное подтверждение электромагнитной теории Максвелла было дано в опытах Г. Герца в 1887 г., через восемь лет после смерти Максвелла. Для получения электромагнитных волн Герц применил прибор, состоящий из двух стержней, разделенных искровым промежутком (вибратор Герца). При определенной разности потенциалов в промежутке между ними возникала искра – высокочастотный разряд, возбуждались колебания тока и излучалась электромагнитная волна. Для приема волн Герц применил резонатор – прямоугольный контур с промежутком, на концах которого укреплены небольшие медные шарики.
На опыте удалось также измерить скорость электромагнитных волн, которая оказалась равной скорости света в вакууме. Эти результаты являются одним из веских доказательств правильности электромагнитной теории Максвелла, согласно которой свет представляет собой электромагнитную волну.

№29.

№30

1 постулат Эйнштейна или принцип относительности: все законы природы инвариантны по отношению ко всем инерциальным системам отсчета. Все физические, химические, биологические явления протекают во всех инерциальных системах отсчета одинаково.

Постулат или принцип постоянства скорости света: скорость света в вакууме постоянна и одинакова по отношении» к любым инерциальным системам отсчета. Она не зависит ни от скорости источника света, ни от скорости его приемника. Ни один материальный объект не может двигаться со скоростью, превышающей скорость света в вакууме. Более того, пи одна частица вещества, т.е. частица с массой покоя, отличной от нуля, не может достичь скорости света в вакууме, с такой скоростью могут двигаться лишь полевые частицы, т.е. частицы с массой покоя, равной нулю.

№31

Простра́нство-вре́мя (простра́нственно-временно́й конти́нуум) — физическая модель, дополняющая пространство равноправным [1] временны́мизмерением и, таким образом, создающая теоретико-физическую конструкцию, которая называется пространственно-временным континуумом.

В соответствии с теорией относительности, Вселенная имеет три пространственных измерения и одно временное измерение, и все четыре измерения органически связаны в единое целое, являясь почти равноправными и (в определенных рамках, см.примечания ниже), способные переходить друг в друга при смене наблюдателем системы отсчета.

В рамках общей теории относительности пространство-время имеет и единую динамическую природу, а его взаимодействие со всеми остальными физическими объектами (телами, полями) — есть гравитация. Таким образом, теория гравитации в рамках ОТО есть теория пространства-времени (полагаемого в ней не плоским, а способным динамически менять свою кривизну).

Пространство-время непрерывно и с математической точки зрения представляет собой многообразие, которое обычно наделяют лоренцевой метрикой.

№32

Последнее изменение этой страницы: 2016-08-16; Нарушение авторского права страницы

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
Adblock detector