No Image

Сформулируйте закон ома для неоднородного участка цепи

СОДЕРЖАНИЕ
0 просмотров
11 марта 2020

Проводники в электрической цепи могут соединяться последовательно или параллельно.

При последовательном соединении (рис.8.1) сила тока во всех частях одинакова: I1= I2=. = In=const, а падение напряжения суммируется: U=U1+ U2+. + Un. Тогда:

R = R 1+ R 2+. + R n =

Если имеется последовательное соединение двух проводников с R1 и R2, то для них выполняется соотношение: .

При параллельном соединении проводников сила тока в неразветвленной части цепи равна сумме сил токов, текущих в разветвленных участках:
I = I1 + I2+…+ In

Падение напряжения в параллельно соединенных (рис.8.2) участках одинаково: U=U1=U2=. = Un =const. Тогда .

Здесь Ri — сопротивление i-го проводника, n — число проводников. Если имеется параллельное соединение двух проводников с R1 и R2, то для них выполняется соотношение: .

Закон Ома для участка цепи, содержащей ЭДС (неоднородного участка цепи):сила тока в цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений цепи н внутреннего сопротивления источника: ,

где –ЭДС источника, r–его внутреннее сопротивление (рис.8.3).

ЭДС источника тока численно равен работе, которую совершают сторонние силы силы (т.е. силы неэлектрической природы) при перемещении единичного положительного электрического заряда вдоль всей цепи.

Устройства, обеспечивающие возникновение и действие сторонних сил, называют источниками тока.В этих устройствах происходит разделение разноименных разрядов. Под действием сторонних сил электрические заряды внутри источника тока движутся в направлении, противоположном действию сил электрического поля. В результате этого на полюсах источника тока поддерживается постоянная разность потенциалов.

Единица ЭДС – вольт (В).

ЭДС, как и сила тока, – величина алгебраическая. Если ЭДС способствует движению положительных зарядов в выбранном направлении, то она считается положительной (e > 0). Если ЭДС препятствует движению положительных зарядов, то она считается отрицательной.

Работа и мощность электрического тока.

Закон Джоуля–Ленца.

При перемещении заряда вдоль электрической цепи совершается работа А кулоновскими и сторонними силами. Если электрическая цепь неподвижна, а ток, протекающий по ней, постоянен (I = const), то совершаемая за промежуток времени dt работаравна:

По этой формуле можно вычислить работу, совершаемую электрическим током, независимо от того, в какой вид энергии превращается электрическая энергия. Эта работа может пойти на увеличение внутренней энергии, например, на движение проводника с током в магнитном поле и т. д. Работа, совершаемая за время dt источником тока с ЭДС E : E .

Единица работы электрического тока – джоуль (Дж).

Мощностьэто отношение работы электрического тока ко времени, за которое совершается работа: .

Единица мощности электрического тока – ватт (Вт).

Необратимые преобразования электрической энергии в тепловую можно объяснить взаимодействием электронов с ионами металлического проводника. Сталкиваясь с ионами металлического проводника, электроны передают им свою энергию. Вследствие этого увеличивается интенсивность колебаний ионов около положения равновесия. А с чем большей скоростью колеблются ионы, тем выше температура проводника.

Чтобы вычислить электрическую энергию, затраченную на нагревание проводника, нужно знать падение напряжения на данном участке проводника U = IR. Подставляя в формулу для dA это выражение, получаем

Если проводник однородный и неподвижный, то, согласно закону сохранения энергии, вся работа тока вдет на его нагревание: . Отсюда: или .

Дата добавления: 2015-11-05 ; просмотров: 3943 | Нарушение авторских прав

На практике видно, что для поддержания стабильного тока в замкнутой цепи необходимы силы принципиально иной природы, нежели кулоновские, тогда наблюдается случай, когда на участке цепи на свободные электрические заряды одновременно действуют как силы электрического поля, так и сторонние силы (любые неконсервативные силы, действующие на заряд, за исключением сил электрического сопротивления (кулоновских сил)). Такой участок называется неоднородным участком цепи. На рисунке ниже приведен пример такого участка.

Читайте также:  Выходы на компьютере названия

Напряженность поля в любой точке цепи равна векторной сумме поля кулоновских сил и поля сторонних сил:

Сформулируем закон Ома для неоднородного участка цепи — Сила тока прямо пропорциональна напряжению на этом участке и обратно пропорциональна его полному сопротивлению:

– формула закона Ома для неоднородного участка цепи.

  • I – сила тока,
  • U12 – напряжение на участке,
  • R – полное сопротивление цепи.

Разность потенциалов характеризует работу силы электрического поля по переносу единичного положительного заряда (q) из точки 1 в точку 2:

— где φ1 и φ 2 – потенциалы на концах участка.

ЭДС характеризует работу сторонних сил по переносу единичного положительного заряда точки 1 в точку 2: — где ε12 – ЭДС, действующая на данном участке, численно равна работе по перемещению единичного положительного заряда вдоль контура.

Напряжение на участке цепи представляет собой суммарную работу сил ЭП и сторонних сил:

Тогда закон Ома примет вид:

ЭДС может быть как положительной, так и отрицательной. Это зависит от полярности включения ЭДС в участок. Если внутри источника тока обход совершается от отрицательного полюса к положительному, то ЭДС положительная (см. рисунок). Сторонние силы при этом совершают положительную работу. Если же обход совершается от положительного полюса к отрицательному, то ЭДС отрицательная. Проще говоря, если ЭДС способствует движению положительных зарядов, то ε>0, иначе ε

Определить ток, идущий по изображенному на рисунке участку АВ. ЭДС источника 20 В, внутреннее сопротивление 1 Ом, потенциалы точек А и В соответственно 15 В и 5 В, сопротивление проводов 3 Ом.

Дано: Решение:
  • ε = 20 В
  • r = 1 Ом
  • φ1 = 15 В
  • φ2 = 5 В
  • R = 3 Ом
  • I – ?
  • Запишем закон Ома для неоднородного участка цепи —
  • Считая, что точка А начало участка, а точка В – конец, возьмем ЭДС со знаком «минус» и, подставив исходные данные, получим
  • Знак «минус» говорит о том, что ток идет от точки В к точке А, от точки с меньшим потенциалом к точке с большим, что обычно для источников тока.
  • Ответ: –2,5 А

Два элемента соединены «навстречу» друг другу, как показано на рисунке. Определить разность потенциалов между точками А и В, если ε1 = 1,4 В, r1 = 0,4 Ом, ε2 = 1,8 В, r2 = 0,6 Ом.

В данной статье расскажем про закон Ома, формулы для полной цепи (замкнутой), участка цепи, неоднородного участка цепи, в дифференциальной и интегральной форме, переменного тока, а также для магнитной цепи. Вы узнаете какие материалы соответствуют и не соответствуют закону Ома, а также где он встречается.
Закон Ома: постоянный ток , протекающий через проводник, прямо пропорционален напряжению , приложенному к его концам и обратно пропорционален сопротивлению .

Закон Ома был сформулирован немецким физиком и математиком Георгом Омом в 1825-26 годах на основе опыта. Это экспериментальный закон, а не универсальный — он применим к некоторым материалам и условиям.

Закон Ома является частным случаем более позднего и более общего — второго закона Кирхгофа

Ниже будет представлено видео, в котором объясняется закон Ома на пальцах.

Формула закона Ома для участка цепи

Интенсивность постоянного тока, протекающего через проводник, пропорциональна напряжению, приложенному к его концам. В интернете часто называют данную формулу первым законом Ома:

I — сила (интенсивность) тока

Электрическое сопротивление:

Коэффициент пропорциональности R называется электрическим сопротивлением или сопротивлением.

Отношение напряжения к току для данного проводника является постоянным:

Читайте также:  Дневник производственного обучения электромонтера 5 разряда

Единица электрического сопротивления составляет 1 Ом (1 Ω):

Резистор имеет сопротивление 1, если приложенное напряжение 1 вольт и сила тока составляет 1 ампер.

Зависимость электрического сопротивления от размера направляющей:

Сопротивление проводящей секции с постоянным поперечным сечением R прямо пропорционально длине этого сегмента li, обратно пропорциональному площади поперечного сечения S:

R — электрическое сопротивление

ρ — удельное сопротивление

I — длина направляющей

S — площадь поперечного сечения

Эта зависимость была подтверждена экспериментально британским физиком Хамфри Ди в 1822 году до разработки закона Ома.

Закон Ома для замкнутой (полной) цепи

Закон Ома для полной цепи — это значение силы (интенсивности) тока в настоящей цепи, который зависит от сопротивления нагрузки и от источника тока (E), также его называют вторым законом Ома.

Электрическая лампочка является потребителем источника тока, подключив их вместе, они создают полную электро-цепь. На картинке выше, вы можете увидеть полную электрическую цепь, состоящую из аккумулятора и лампы накаливания.

Электричество, проходит через лампу накаливания и через сам аккумулятор. Следовательно, ток проходя через лампу, в дальнейшем пройдет и через аккумулятор, то есть сопротивление лампочки складывается со сопротивлением аккумулятора.

Сопротивление нагрузки (лампочка), называют внешним сопротивлением, а сопротивление источника тока (аккумулятора) — внутренним сопротивление. Сопротивление аккумулятора обозначается латинской буквой r.

Когда электричество течет вокруг цепи, внутреннее сопротивление самой ячейки сопротивляется потоку тока, и поэтому тепловая энергия теряется в самой ячейке.

  • E = электродвижущая сила в вольтах, V
  • I = ток в амперах, A
  • R = сопротивление нагрузки в цепи в Омах, Ω
  • r = внутреннее сопротивление ячейки в Омах, Ω

Мы можем изменить это уравнение;

В этом уравнении появляется ( V ), что является конечной разностью потенциалов, измеренной в вольтах (V). Это разность потенциалов на клеммах ячейки при протекании тока в цепи, она всегда меньше э.д.с. ячейки.

Закон Ома для неоднородного участка цепи

Если на участке цепи действуют только потенциальные силы (Рисунок 1а), то закон Ома записывается в известном виде . Если же в кругу проявляется еще и действие сторонних сил (Рисунок 2б), то закон Ома примет вид , откуда . Это и есть закон Ома для любого участка цепи.

Закон Ома можно распространить и на весь круг. Соединив точки 2 и 1 (Рисунок 3в), преобразуем разность потенциалов в ноль, и учитывая сопротивление источника тока, закон Ома примет вид . Это и есть выражение закона Ома для полной цепи.

Последнее выражение можно представить в различных формах. Как известно, напряжение на внешнем участке зависит от нагрузки, то есть или , или .

В этих выражениях Ir — это падение напряжения внутри источника тока, а также видно, что напряжение U меньше ε на величину Ir . Причем, чем больше внешнее сопротивление по сравнению с внутренним, тем больше U приближается к ε.

Рассмотрим два особых случая, в отношении внешнего сопротивления цепи.

1) R = 0 — такое явление называют коротким замыканием. Тогда, из закона Ома имеем — , то есть ток в цепи возрастает до максимума, а внешний спад напряжения U 0. При этом в источнике выделяется большая мощность, что может привести к его неисправности.

2) R = ∞ , то есть электрическая цепь разорвана, тогда , а . Итак, в этом случае, ЭДС численно равна напряжению на клеммах разомкнутого источника тока.

Закон Ома в дифференциальной форме

Закон Ома можно представить в таком виде, чтобы он не был связан с размерами проводника. Выделим участок проводника Δ l , на концах которой приложено потенциалы φ 1 и φ 2. Когда средняя площадь сечения проводника Δ S , а плотность тока j , то сила тока

Читайте также:  Схема блока питания принтера canon

Если Δ l → 0, то взяв предел отношения, . Итак, окончательно получим , или в векторной форме — это выражение закона Ома в дифференциальной форме. Этот закон выражает силу тока в произвольной точке проводника в зависимости от его свойств и электрического состояния.

Закон ома для переменного тока

Это уравнение представляет собой запись закона Ома для цепей переменного тока относительно их амплитудных значений. Понятно, что оно будет справедливым и для эффективных значений силы и тока: .

Для цепей переменного тока возможен случай, когда , а это значит, что U L = U C . Поскольку эти напряжения находятся в противофазе, то они компенсируют друг друга. Такие условия называют резонансом напряжений. Резонанс можно достичь или при ω = const , изменяя С и L , или же при постоянных С и L подбирают ω, которая называется резонансным. Как видно — .

Особенности резонанса напряжений следующие:

  • полное сопротивление цепи минимальное, Z=R ;
  • амплитуда тока — максимальная ;
  • амплитуда значений приложенного напряжения равна амплитуде на активном сопротивлении;
  • напряжение и ток находятся в одинаковых фазах (φ = 0);
  • мощность источника передается только активному сопротивлению, следовательно полезная мощность — максимальная.


Резонанс токов получают при параллельном соединении индуктивности и емкости на рисунке слева. По первому закону Кирхгофа результирующий ток в какой-то момент времени I = IL+IC. Несмотря на то, что суммы ІL и IC могут быть достаточно большими, ток в главном круге станет равным нулю, а значит сопротивление цепи станет максимальным.
Зависимость силы тока от частоты при различных активных сопротивлениях показана на рисунке справа.

Закон Ома в интегральной форме

С дифференциального закона Ома можно непосредственно получить интегральный закон. Для этого умножим скалярно левую и правую части выражения на элементарную длину проводника (перемещение носителя тока), образовав соотношение

В (1) j*S n = И есть величина силы тока. Проинтегрируем (1) по участку круга L с точки 1 до точки 2

есть сопротивление проводника, а — удельное сопротивление. Интеграл в правой части (2) является напряжение U на концах участка

Окончательно из (2) — (4) имеем выражение для закона Ома в интегральной форме

который он установил экспериментально.

Интерпретация закона Ома

Интенсивность тока, являющаяся действием приложенного напряжения, ведет себя пропорционально его напряжению. Например: если приложенное напряжение увеличивается в два раза, оно также удваивает силу тока (интенсивность тока).

Помните, что закон Ома удовлетворяется только частью материалов — в основном металлами и керамическими материалами.

Когда закон Ома встречается и какие материалы соответствуют и не соответствуют закону Ома

Закон Ома является экспериментальным законом, выполненным для некоторых материалов (например, металлов) для фиксированных условий тока, в частности температуры проводника.

Материалы, относящиеся к закону Ома, называются омическими направляющими или линейными проводниками. Примерами проводников, которые соответствуют закону Ома, являются металлы (например, медь, золото, железо), некоторые керамические изделия и электролиты.

Материалы, не относящиеся к закону Ома, в которых сопротивление является функцией интенсивности протекающего через них тока, называются нелинейными проводниками. Примерами руководств, не относящихся к закону Ома, являются полупроводники и газы.

Закон Ома не выполняется, когда изменяются параметры проводника, особенно температура.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Строительство
0 комментариев
Adblock detector