No Image

Стойкость алюминия к коррозии

СОДЕРЖАНИЕ
0 просмотров
11 марта 2020

Коррозионная стойкость алюминия

Одним из самых важных качеств алюминия является его исключительно высокая стойкость к коррозии. Наибольшей коррозионной стойкостью обладает алюминий высокой чистоты, алюминий технической чистоты с малым количеством примесей, сплавы алюминий — магний (сплавы с относительно невысоким содержанием магния до 3-4%); сплавы систем алюминий — магний — кремний (при отсутствии меди или ограниченным ее содержанием до 0,1%). Наиболее подвержен коррозии среди всех алюминиевых сплавов — дюралюминий, в котором содержится до 6% меди.

Усиленная коррозия дюралюминия объясняется, тем, что при термической обработке из твердого раствора выделяются кристаллиты соединений алюминия с медью, которые с основным металлом образуют электрические микропары, являющиеся причиной межкристалитной коррозии. Для того чтобы повысить стойкость против коррозии продукции из дюралюминия, производят так называемое плакирование. Оно заключается в том, что на поверхность заготовки накладывают тонкий лист чистого алюминия или алюминиево-магниевого сплава, нагревают до 150-200° и прокатывают до получения гладкой поверхности.

Алюминий обладает высокой коррозионной стойкостью к морской воде, уксусной, лимонной, винной и другим органическим кислотам. Он практически не взаимодействует с концентрированной азотной и 100 %-ной серной кислотами, но быстро разрушается в разбавленной азотной кислоте, а также в разбавленной серной кислоте при концентрациях более 10 % (максимальная растворимость наблюдается в 80 %-ной серной кислоте). Быстро растворяется алюминий также в растворах щелочей, соляной, плавиковой и бромистоводородной кислотах; слабо взаимодействует с борной кислотой. Алюминий устойчив в нейтральных растворах солей магния и натрия, слабо влияют на алюминий сернистый газ, аммиак и сероводород.

Однако алюминий легко вступает в реакцию с кислородом. В кислородосодержащей среде, алюминий покрываетя твердой и плотной пленкой окисла алюминия Al2O3, которая не растворяется в воде. Эта пленка защищает алюминий во влажной среде от дальнейшей коррозии.

Окружающая нас атмосфера всегда имеет определенный уровень влажности, а также определенный уровень загрязнений и отходов. Учитывая, что свойства атмосферы отличаются в зависимости от региона и степени индустриализации, можно выделить: атмосфера сельская – средняя влажность и малая степень загрязнений; атмосфера приморских регионов – высокая влажность, большое количество производных хлора, йода, средняя степень загрязнений; атмосфера городская – средняя влажность, среднее содержание окислов углерода и серы, серной кислоты и продуктов сжигания жидкого топлива; атмосфера промышленная – средняя влажность, большое количество окислов углерода и серы, кислот (серной, соляной, азотной, фтористой).

Одним из самых эффективных методов является анодирование. Анодирование состоит из ряда электрохимических процессов по подготовке поверхности и по созданию на ней более твердой и устойчивой против коррозии пленки окислов алюминия, чем пленка, полученная при естественном окислении. Сразу же после анодирования искусственная бесцветная пленка, обладающая большой адсорбционной способностью, может быть окрашена неорганическими пигментами в любые цвета путем погружения деталей в подогретую ванну с красителем.

Другим распространенным способом защиты от коррозии является нанесение на металлопрокат лакокрасочных покрытий, препятствующее проникновению к поверхности металла влаги, агрессивных газов и жидкостей. Лакокрасочные покрытия, как правило, состоят из слоя грунтовки и одного или нескольких нескольких слоев полимерного покрытия, адгезионно связанных с защищаемой поверхностью. Покрытие получается нанесением жидких лакокрасочных материалов валками на окрашиваемую поверхность с преследующей полимеризацией пленки в проходном тоннеле при температуре 220-280С. Такое покрытие выдерживает высокую степень деформации вместе с металлом и является надежной защитой от коррозии.

Читайте также:  Прочистка дымоходов и вентканалов в многоквартирном доме

Коррозия алюминия – разрушение металла под влиянием окружающей среды.

Для реакции Al 3+ +3e → Al стандартный электродный потенциал алюминия составляет -1,66 В.

Температура плавления алюминия — 660 °C.

Плотность алюминия — 2,6989 г/см 3 (при нормальных условиях).

Алюминий, хоть и является активным металлом, отличается достаточно хорошими коррозионными свойствами. Это можно объяснить способностью пассивироваться во многих агрессивных средах.

Коррозионная стойкость алюминия зависит от многих факторов: чистоты металла, коррозионной среды, концентрации агрессивных примесей в среде, температуры и т.д. Сильное влияние оказывает рН растворов. Оксид алюминия на поверхности металла образуется только в интервале рН от 3 до 9!

Очень сильно влияет на коррозионную стойкость Al его чистота. Для изготовления химических агрегатов, оборудования используют только металл высокой чистоты (без примесей), например алюминий марки АВ1 и АВ2.

Коррозия алюминия не наблюдается только в тех средах, где на поверхности металла образуется защитная оксидная пленка.

При нагревании алюминий может реагировать с некоторыми неметаллами:

2Al + N2 → 2AlN – взаимодействие алюминия и азота с образованием нитрида алюминия;

4Al + 3С → Al4С3 – реакция взаимодействия алюминия с углеродом с образованием карбида алюминия;

2Al + 3S → Al2S3 – взаимодействие алюминия и серы с образованием сульфида алюминия.

Коррозия алюминия на воздухе (атмосферная коррозия алюминия)

Алюминий при взаимодействии с воздухом переходит в пассивное состояние. При соприкосновении чистого металла с воздухом на поверхности алюминия мгновенно появляется тонкая защитная пленка оксида алюминия. Далее рост пленки замедляется. Формула оксида алюминия – Al2O3 либо Al2O3•H2O.

Реакция взаимодействия алюминия с кислородом:

Толщина этой оксидной пленки составляет от 5 до 100 нм (в зависимости от условий эксплуатации). Оксид алюминия обладает хорошим сцеплением с поверхностью, удовлетворяет условию сплошности оксидных пленок. При хранении на складе, толщина оксида алюминия на поверхности металла составляет около 0,01 – 0,02 мкм. При взаимодействии с сухим кислородом – 0,02 – 0,04 мкм. При термической обработке алюминия толщина оксидной пленки может достигать 0,1 мкм.

Алюминий достаточно стоек как на чистом сельском воздухе, так и находясь в промышленной атмосфере (содержащей пары серы, сероводород, газообразный аммиак, сухой хлороводород и т.п.). Т.к. на коррозию алюминия в газовых средах не оказывают никакого влияния сернистые соединения – его применяют для изготовления установок переработки сернистой нефти, аппаратов вулканизации каучука.

Коррозия алюминия в воде

Коррозия алюминия почти не наблюдается при взаимодействии с чистой пресной, дистиллированной водой. Повышение температуры до 180 °С особого воздействия не оказывает. Горячий водяной пар на коррозию алюминия влияния также не оказывает. Если в воду, даже при комнатной температуре, добавить немного щелочи – скорость коррозии алюминия в такой среде немного увеличится.

Взаимодействие чистого алюминия (не покрытого оксидной пленкой) с водой можно описать при помощи уравнения реакции:

При взаимодействии с морской водой чистый алюминий начинает корродировать, т.к. чувствителен к растворенным солям. Для эксплуатации алюминия в морской воде в его состав вводят небольшое количество магния и кремния. Коррозионная стойкость алюминия и его сплавов, при воздействии морской воды, значительно снижается, если в состав метала будет входить медь.

Читайте также:  Мини шкаф в прихожую фото

Коррозия алюминия в кислотах

С повышением чистоты алюминия его стойкость в кислотах увеличивается.

Коррозия алюминия в серной кислоте

Для алюминия и его сплавов очень опасна серная кислота (обладает окислительными свойствами) средних концентраций. Реакция с разбавленной серной кислотой описывается уравнением:

Концентрированная холодная серная кислота не оказывает никакого влияния. А при нагревании алюминий корродирует:

При этом образуется растворимая соль – сульфат алюминия.

Al стоек в олеуме (дымящая серная кислота) при температурах до 200 °С. Благодаря этому его используют для производства хлорсульфоновой кислоты (HSO3Cl) и олеума.

Коррозия алюминия в соляной кислоте

В соляной кислоте алюминий или его сплавы быстро растворяются (особенно при повышении температуры). Уравнение коррозии:

Аналогично действуют растворы бромистоводородной (HBr), плавиковой (HF) кислот.

Коррозия алюминия в азотной кислоте

Концентрированный раствор азотной кислоты отличается высокими окислительными свойствами. Алюминий в азотной кислоте при нормальной температуре исключительно стоек (стойкость выше, чем у нержавеющей стали 12Х18Н9). Его даже используют для производства концентрированной азотной кислоты методом прямого синтеза

При нагревании коррозия алюминия в азотной кислоте проходит по реакции:

Коррозия алюминия в уксусной кислоте

Алюминий обладает достаточно высокой стойкостью к воздействию уксусной кислоты любых концентраций, но только если температура не превышает 65 °С. Его используют для производства формальдегида и уксусной к-ты. При более высоких температурах алюминий растворяется (исключение составляют концентрации кислоты 98 – 99,8%).

В бромовой, слабых растворах хромовой (до10%), фосфорной (до 1%) кислотах при комнатной температуре алюминий устойчив.

Слабое влияние на алюминий и его сплавы оказывают лимонная, масляная, яблочная, винная, пропионовая кислоты, вино, фруктовые соки.

Щавелевая, муравьиная, хлорорганические кислоты разрушают металл.

На коррозионную стойкость алюминия очень сильно влияет парообразная и капельножидкая ртуть. После недолгого контакта металл и его сплавы интенсивно корродируют, образуя амальгамы.

Коррозия алюминия в щелочах

Щелочи легко растворяют защитную оксидную пленку на поверхности алюминия, он начинает реагировать с водой, в результате чего металл растворяется с выделением водорода (коррозия алюминия с водородной деполяризацией).

Также оксидную пленку разрушают соли ртути, меди и ионы хлора.

Коррозионная стойкость алюминия

Обычно алюминий и алюминиевые сплавы имеют хорошее сопротивление коррозии в следующих средах: атмосфере, пресной и морской воде, большинстве почв, большинстве продуктов питания и многих химических веществах. Выражение «хорошее сопротивление коррозии» означает, что в большинстве случаев изделия или детали из алюминиевых сплавов можно использовать без специальной защиты поверхности в течение длительного срока службы.

Степень воздействия коррозии на алюминиевое изделие зависит от степени агрессивности среды, в которой оно работает, а также особенностей его функций и ожидаемого срока службы. При необходимости принимают меры по предотвращению или ограничению воздействия коррозии алюминия и алюминиевых сплавов, в том числе, применение защитных покрытий поверхности, таких как, например, порошковая окраска и анодирование.

Влияние легирующих элементов

Легирующие элементы алюминиевых сплавов оказывают влияние на их коррозионные свойства. Поэтому для каждой коррозионной среды необходимо выбрать наиболее подходящий сплав. Главными легирующими элементами, которые применяются в алюминиевых сплавах, являются медь, магний, марганец, кремний и цинк, а также неизбежные примеси промышленных сплавов – железо и кремний. Влияние, которое эти элементы оказывают на коррозию алюминия и алюминиевых сплавов, заключается в следующем:

  • медь снижает коррозионную стойкость больше, чем любой другой легирующий элемент;
  • железо снижает коррозионную стойкость и его содержание нужно держать низким, если требуется максимальное сопротивление коррозии;
  • магний оказывает положительное влияние на коррозионную стойкость;
  • марганец производит на коррозионную стойкость небольшой положительный эффект;
  • кремний оказывает на коррозионную стойкость небольшое отрицательное влияние;
  • цинк в большинстве сред мало влияет на коррозионную стойкость.
Читайте также:  Телевизор из старого компьютера

Коррозия деформируемых алюминиевых сплавов

Алюминий (более 99,9 % Al)

Сверхчистый алюминий (более 99,9 % Al) показывает наибольшую коррозионную стойкость. Она резко падает с увеличением содержания примесей, особенно меди и железа.

Алюминиевые сплавы Al-Mn

Сплавы Al-Mn имеют очень хорошую коррозионную стойкость и применяются на открытом воздухе без какой-либо защиты.

Алюминиевые сплавы Al-Mg

В общем случае сплавы AlMg имеют самую лучшую коррозионную стойкость среди всех деформируемых алюминиевых сплавов.

При содержании магния более 4 % на коррозионную стойкость изделий из этих сплавов большое влияние оказывает технология изготовления. После длительной выдержки при температуре выше 60 °С сплавы с большим содержанием магния становятся подверженными коррозии под напряжением и подповерхностной коррозии.

Алюминиевые сплавы Al-Cu

Сплавы с содержанием меди больше 0,25 % – все дюралюмины (дюралюминии, дюрали дуралюмины) имеют низкую коррозионную стойкость и не применяются в агрессивных средах морского воздуха или промышленной атмосферы без защитных покрытий. Раньше одной из самых частых ошибок было применение дюралей в коррозионно-агрессивных средах без адекватного защитного покрытия.

Алюминиевые сплавы AlZnMgCu

Сплавы, содержащие цинк, магний и медь, по коррозионному поведению аналогичны сплавам Al-Cu и также требуют защиты в коррозионно-агрессивных средах.

Алюминиевые сплавы Al-Zn-Mg

Для этого семейства сплавов критическую важность для коррозионной стойкости играют технологические методы, особенно термическая обработка, а также химический состав сплава. Алюминиевые сплавы Al-Zn-Mg могут быть чувствительными к коррозионному растрескиванию под напряжением и подповерхностной коррозии.

Коррозия литейных алюминиевых сплавов

Для алюминиевых отливок коррозия обычно является намного меньшей проблемой, чем, скажем, для листовых изделий, так как обычно поперечное сечение отливок значительно толще и можно допустить больше поверхностной коррозии.

  • Литейные алюминиевые сплавыAlMg обычно имеют хорошую коррозионную стойкость и применяются в морской среде.
  • Литейные алюминиевые сплавыAlSi обычно относят к сплавам, которые имеют хорошую коррозионную стойкость в различных воздушных и водных средах.
  • Литейные алюминиевые сплавыAlCuиAlSiCu требуют защитного покрытия при работе коррозионной среде.

Рейтинг сплавов по стойкости к коррозии

Коррозионное поведение алюминиевых сплавов зависит от вида среды, которой они должны сопротивляться. Таблица ниже дает рейтинг коррозионной стойкости различных алюминиевых сплавов в кислотных и щелочных средах. Чем меньше число – тем выше рейтинг.

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
Adblock detector