No Image

Усиление двутавровой балки ребрами жесткости

СОДЕРЖАНИЕ
0 просмотров
11 марта 2020

Общие положения

Усиление металлических конструкций может производиться после их разгружения или под нагрузкой:

увеличением поперечного сечения отдельных элементов и узлов их соединений,

изменением расчетной схемы конструкций.

Особенностью усиления металлических конструкций является доступность сечения по всей длине элементов и свариваемость металла, позволяющие уменьшить трудоемкость обеспечения совместной работы основного и дополнительного элементов.

Однако нагрев элементов при сварке может снижать его прочность. При температуре более 550°С металл переходит в пластическое состояние и выключается из работы по восприятию усилий. Степень снижения прочности металла в месте сварки зависит от способа и режима сварки, толщины и ширины элемента, а также от направления сварных швов. Так, для продольных швов снижение прочности составляет до 15 %, а для поперечных – достигает 40 %. Исходя из этого, запрещается применение поперечных сварных швов при усилении металлических конструкций под нагрузкой.

С целью безопасности производства работ и повышения эффективности усиления металлических элементов и узлов их сопряжений следует стремиться к максимальному разгружению конструкции перед усилением, чтобы максимальные напряжения не превышали (где – расчетное сопротивление стали по пределу текучести).

15.2. Усиление металлических конструкций
увеличением их поперечного сечения

Усиление металлических конструкций, работающих на растяжение, сжатие и изгиб, увеличением поперечного сечения элементов производится присоединением дополнительных элементов. Совместная работа дополнительных элементов усиления с усиливаемой конструкцией обеспечивается путем сварки, а также с помощью болтового или заклепочного соединения.

При выполнении усиления центрально-растянутых и сжатых металлических конструкций следует стремиться к сохранению центровки усиливаемых элементов и узлов соединений (то есть дополнительные элементы необходимо располагать так, чтобы положение центра тяжести элемента после усиления не изменялось), в противном случае, требуется проверка прочности усиленного элемента и узла сопряжения с учетом появившегося эксцентриситета.

При конструировании усиления сварные швы, болтовые и заклепочные соединения необходимо располагать в удобных для исполнения и контроля качества местах. Кроме того, при сварных соединениях следует учитывать появление дополнительных и остаточных сварочных деформаций. Например, усиление ферм следует начинать с элементов и узлов нижнего пояса, а затем производить усиление верхнего пояса.

Обеспечение совместной работы дополнительных деталей при усилении растянутых элементов производится их обязательной заводкой в узлы на расстояние, необходимое для размещения прикрепляющих швов, достаточных для полного включения в работу у границы узловой фасонки.

В качестве дополнительных элементов при усилении центрально-растянутых элементов используются, как правило, полосы и круглые стержни (рис. 15.1). При этом в случае приварки усиливающих полос к полкам и перу спаренных уголков требуется срезка выступающих концов соединительных планок.

В случае обеспечения совместной работы дополнительных элементов с усиливаемым растянутым элементом посредством сварки сварные швы рекомендуется принимать с высотой катета шва 3…6 мм (в зависимости от толщины соединяемых деталей), а швы, расположенные вблизи края элемента, следует выполнять сплошными, т.к. прерывистые швы создают многочисленные «надрезы» – концентраторы напряжений, способствующие хрупкому разрушению при растяжении.

Усиление сжатых элементов стальных конструкций производится:

– увеличением поперечного сечения элемента при незначительном изменении его гибкости,

– увеличением поперечного сечения элемента со значительным уменьшением его гибкости,

– уменьшением расчетной длины элемента без изменения поперечного сечения.

В практике усиления металлических конструкций первый метод применяется для сжатых элементов небольшой длины (коротких), когда прочность элемента определяется площадью его поперечного сечения. Два других метода усиления характерны для длинных сжатых элементов, теряющих устойчивость при разрушении.

В первом случае для усиления центрально-сжатых элементов, аналогично растянутым, в качестве дополнительных элементов могут быть использованы полосы и круглые стержни, эффективно увеличивающие площадь поперечного сечения, но незначительно изменяющие его жесткость при изгибе (см. рис. 15.1). Как и в случае растянутых элементов, дополнительные детали усиления должны заводиться в узлы сопряжения.

При усилении сжатых элементов увеличением поперечного сечения с уменьшением его гибкости в качестве дополнительных элементов используются прокатные профили в виде труб, уголков, швеллеров и т.д., развивающих сечение и эффективно повышающих его жесткость при изгибе (рис. 15.2). При этом если нет опасности потери устойчивости для сечения не усиленного элемента вблизи узла, детали усиления могут быть не заведены в узел и не прикреплены к нему. Допускается применение прерывистых швов, уменьшающих сварочные деформации, сокращающие сроки сварочных работ и массу наплавленного металла.

Рис. 15.1. Усиление увеличением поперечного сечения без изменения гибкости металлических элементов: а – из спаренных уголков; б – из спаренных швеллеров; в – из двутавров

Рис. 15.2. Усиление увеличением поперечного сечения с уменьшением гибкости
металлических элементов: а – из спаренных уголков; б – из спаренных швеллеров
и двутавров; в – сварных сплошного сечения; г – клепаных

Уменьшение расчетной длины отдельных элементов эффективно в случае, когда не обеспечена их устойчивость. Усиление сжатых элементов уменьшением его расчетной длины в плоскости стропильной фермы производится установкой дополнительных раскосов или подвесок (рис. 15.3, а), из плоскости фермы или для отдельно стоящих стоек – предварительно напряженных шпренгелей (рис. 15.3, б, в).

Рис. 15.3. Усиление стальных конструкций за счет уменьшения их расчетной длины:

а – установкой дополнительных раскосов; б, в – установкой предварительно
напряженных шпренгелей: 1 – усиливаемый элемент, 2 – дополнительные раскосы,
3 – дополнительная подвеска, 4 – предварительно напряженные шпренгели

Усиление изгибаемых металлических конструкций имеет следующие особенности:

— увеличение поперечного сечения изгибаемого элемента можно ограничивать лишь зоной действия максимальных изгибающих моментов, где усиление требуется по расчету;

— при конструировании усиления следует стремиться к наиболее эффективному размещению дополнительных деталей (на возможно большем расстоянии от нейтральной оси неусиленного сечения);

— учитывая влияние сварочных деформаций при усилении, увеличивающих прогиб, усиление изгибаемых элементов необходимо начинать с нижнего пояса, затем при необходимости следует усилить стенку, в последнюю очередь – верхний пояс.

Некоторые варианты конструктивных схем усиления стальных балок приведены на рис. 15.4 и 15.5.

Рис. 15.4. Усиление изгибаемой балочной конструкции в пролете

Читайте также:  Плитка твистер в интерьере

Рис. 15.5. Усиление стальных балок увеличением поперечного сечения с применением:

а – пластин; б – стержней; в – уголков; г – труб; д – двутавров

Усиленная стальная балка кроме условия прочности должна удовлетворять условиям общей и местной устойчивости. Повышение местной устойчивости балок достигается установкой дополнительных поперечных (рис. 15.6, а), продольных (рис. 15.6, б) и диагональных ребер жесткости (рис. 15.6, в). С целью уменьшения концентрации местных напряжений у концов коротких поперечных ребер жесткости в сжатой зоне они должны быть окаймлены продольными ребрами жесткости (рис. 15.6, г).

Повышение местной устойчивости элементов стальных конструкций может быть достигнуто также их бетонированием (рис. 15.7, а) или прикреплением к ним деревянных деталей (рис. 15.7, б, в).

Рис. 15.6. Усиление стенок стальных балок дополнительными ребрами жесткости:

а – поперечными; б – продольными; в – диагональными; г – короткими поперечными
с окаймлением их продольными ребрами жесткости

Рис. 15.7. Усиление стенок стальных конструкций: а – заполнением полости колонны бетоном; б, в – прикреплением деревянных брусьев; 1 – усиливаемая стальная
конструкция, 2 – бетон, 3 – отверстие в стенке для заполнения бетоном,
4 – деревянные брусья, 5 – стяжной болт

15.3. Расчет металлических конструкций,
усиленных увеличением их поперечного сечения

Расчет усиления стальных конструкций увеличением их поперечного сечения производится исходя из стадии напряженно-деформированного состояния и принятой гипотезы:

по упругой стадии – сечение дополнительного элемента усиления воспринимает только усилие от нагрузок, приложенных к конструкции после усиления;

по пластической стадии – при достижении напряжений в сечении усиливаемого элемента предела текучести происходит перераспределение и выравнивание напряжений с сечением дополнительного элемента.

Схема напряженного состояния металлической балки, усиленной под нагрузкой, приведена на рис. 15.8.

Рис. 15.8. Схема напряженного состояния балки, усиленной под нагрузкой:

а – в упругой стадии; б – в пластической стадии

Расчет усиления металлических конструкций по пластической стадии дает более экономичные решения, но не для всех случаев разрушения экспериментально подтвержден. Поэтому данный вариант расчета применяется при действии статических нагрузок на усиливаемые элементы при отсутствии опасности потери устойчивости. В остальных случаях расчет производится по упругой стадии.

Расчет усиленных центрально-растянутых и коротких сжатых элементов производится из условий прочности:

— по упругой стадии

; (15.1)

— по пластической стадии

, (15.2)

где – соответственно продольное усилие, действующее в элементе при его усилении и продольное усилие от дополнительной нагрузки, приложенной после усиления; – соответственно площадь поперечного сечения основного и дополнительного элементов; – расчетное сопротивление стали основного элемента; – коэффициент условий работы элемента конструкции по [11, приложение 4*].

Расчет усиления сжатых элементов по условию устойчивости производится с учетом того, что потеря устойчивости элемента, усиленного под нагрузкой, может произойти только для всего усиленного сечения. Поэтому в расчете используется коэффициент продольного изгиба , определенный по гибкости элемента после усиления.

Расчет усиленных центрально-сжатых элементов выполняется из условия обеспечения устойчивости

. (15.3)

Возможные искривления от сварки при проверке устойчивости допускается учитывать с помощью коэффициента условий работы .

Расчет прочности по крайнему сжатому или растянутому волокнам усиленных изгибаемых элементов производится из условий:

— по упругой стадии для крайнего волокна основного сечения на расстоянии от центра тяжести основного сечения и расстоянии
от центра тяжести усиленного сечения

; (15.4)

— по упругой стадии для крайнего волокна дополнительного сечения

; (15.5)

— по пластической стадии

, (15.6)

где – соответственно изгибающий момент, действующий в элементе при его усилении и изгибающий момент от дополнительной нагрузки, приложенной после усиления; – момент инерции поперечного сечения элемента соответственно до усиления и после усиления; – расчетное сопротивление стали соответственно основного и дополнительного элемента при растяжении или сжатии; — расстояние от центра тяжести усиленного сечения до крайнего волокна дополнительного элемента; — пластический момент сопротивления поперечного сечения усиленного элемента, принимаемый не более 1,2 упругого момента сопротивления сечения усиленного элемента.

Для усиленных изгибаемых элементов должно выполняться условие прочности на сдвиг по контакту основного и дополнительного сечения

, (15.7)

где – статический момент части сечения дополнительной детали усиления относительно нейтральной оси; – толщина основного или дополнительного элемента в месте соединения; – расчетное сопротивление стали срезу основного или дополнительного элемента.

Проверка местной устойчивости стенки балочных конструкций после усиления производится для всех отсеков между поперечными ребрами жесткости без учета начальных напряжений в ней от нагрузки при усилении по методике действующих норм.

Швы, прикрепляющие дополнительные детали усиления к основному сечению усиливаемых элементов, рассчитываются на восприятие сдвигающих усилий, равных предельным усилиям на растяжение или сжатие для дополнительных деталей усиления.

Усиление отдельных элементов металлических конструкций, имеющих погнутости, трещины, вмятины и разрывы сечений, производится, как правило, после их разгружения выравниванием, присоединением дополнительных деталей (рис. 15.9, 15.10.) или заменой поврежденной части (рис. 15.11).

Рис. 15.9. Усиление элементов стальных конструкций, имеющих повреждения,
накладками: а – из уголка; б – из швеллера с дополнительными соединительными планками; в – из пластины

Рис. 15.10. Усиление искривленных стальных элементов шпренгелем

Рис. 15.11. Восстановление элементов стальных конструкций вырезанием
и заменой поврежденной части: а – элементов из спаренных уголков;
б – элементов из одиночного уголка

Дата добавления: 2016-01-20 ; просмотров: 24710 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГБОУ ВПО «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ»

КАФЕДРА ПРОМЫШЛЕННОГО И ГРАЖДАНСКОГО СТРОИТЕЛЬСТВА

По дисциплине: «Расчет усиления металлической балка»

Выполнил студент VI курса:

Обосновать необходимость усиления стальных балок настила рабочей площадки промышленного здания. Рассчитать предложенный вариант усиления балок.

Балки настила выполнены из двутавров №30 (ГОСТ 8239-89)

Расчетное сопротивление стали двутавров Ryo=250 МПа.

Расчетное сопротивление стали элементов усиления (сталь С245)

Исходная полезная технологическая нагрузка (нормативное значение)на рабочую площадку poн=9 кН/м2.

По балкам уложены железобетонные плиты настила толщиной 6,0 см, а также стяжка(пол) толщиной 2,0см.

Читайте также:  Как сделать лавочку из спичек

Пролет балок настила(шаг главных балок ) l=6,2 м

Увеличение технологической нагрузки 50%.

Схема усиления балок-полосами, привариваемыми к верхним и нижним полкам двутавров.

Пролет главных балок равен 12 шагам балок настила 12х1,1=13,2 м.


План балочной клетки (ячейки рабочей площадки)

Опирание балок настила на главные осуществляется в одном уровне; балки настила привариваются к поперечным ребрам жесткости главных балок

Расчет прочности усиленной балки.

Определение нагрузок на балку до ее усиления.

Распределенная постоянная нагрузка на 1м2 поверхности рабочей площадки дана в таблице.

Нормативное значение нагрузки, кН/м2

Коэффициент надежности по нагрузке

Расчетное значение нагрузки, кН/м2

Цементная стяжка толщиной 20 мм при объемном весе 20кН/м3

Железобетонные плиты толщиной 60 мм при объемном весе 25 кН/м3

Собственный вес балок настила при погонной массе двутавра №30-36,5кг

Нормативное значение суммарной погонной нагрузки на балку до ее усиления:

где gн=2,265 кн/м2-нормативное значение распределенной постоянной нагрузки;

рон=9 кН/м2-исходная технологическая нагрузка(нормативное значение);

в=1,1 м-шаг балок настила.

Расчетное значение суммарной погонной нагрузки на балку до ее усиления:

где g=2,553 кН/м2-расчетное значение распределенной постоянной нагрузки;

γf =1,2-коэффициент надежности по технологической нагрузке.

Определение максимального изгибающего момента, нормального напряжения в балке и ее прогиба до усиления.

Максимальный изгибающий момент в балке:

Максимальное нормальное напряжение в балке :

где Wx= 472 см3 -момент сопротивления сечения двутавра №30.

Прочность балки до ее дополнительного загружения обеспечена, т.к.

При недостаточной несущей способности отдельных элементов, конструкций пли зданий и сооружений произ­водится их усиление, при этом, так же как и при конст­рукциях из других материалов, необходимо предусмот­реть минимальные потери из-за остановок технологиче­ского цикла.

Элементы сварных конструкций, испытывающие рас­тяжение, сжатие или изгиб, могут быть усилены увели­чением сечений путем приварки новых дополнительных деталей. Несущая способность элемента при этом воз­растает с увеличением его сечения или жесткости. Од­нако нагрев элемента в процессе сварки может снижать его несущую способность. Степень снижения зависит от режима сварки, толщины и ширины элемента, на­правления сварки. Для продольных швов снижение прочности не превышает 15%, для поперечных может постигать 40%. Поэтому наложение швов поперек эле­мента при его усилении под нагрузкой категорически запрещается.

В связи с некоторой потерей прочности элементов при сварке, а также перераспределением напряжений как по сечению элемента, так и между элементами уси­ление под нагрузкой производят при напряжениях, не превышающих 0,8 Rу, где Rу — расчетное сопротивление для стали, из которой изготовлен элемент.

Усиление сжатых стоек.

Эффективным средством усиления сжатых стальных стержней является применение предварительно напря­женных телескопических труб и элементов из других жестких профилей.

Сущность способа (рис. 39) заключается в том, что разгружающая предварительно напряженная стойка со­стоит из двух труб требуемого диаметра, причем внут­ренняя труба сжата, а наружная растянута. Достигает­ся это следующим образом: наружную трубу устанавли­вают в горизонтальное положение, с одного торца трубы приваривают фланец с центральным отверстием диа­метром 30-40 мм, с другого торца на расстоянии 2-3 м строго по оси наружной трубы устанавливают внутрен­нюю трубу чуть меньшего диаметра, чтобы она могла с небольшим зазором входить в наружную. Затем газо­выми горелками производят нагрев наружной трубы до расчетного удлинения, вводят в нее внутреннюю трубу и обваривают по всему периметру свободного торца.

Сокращаясь при остывании, наружная труба обжимает внутреннюю. В таком виде предварительно напряжен­ный элемент устанавливают рядом с усиливаемой стой­кой и плотно подклинивают под разгружаемую конст­рукцию. Затем двумя газовыми горелками наружную трубу разрезают в нижней части по окружности, осво­бождая таким образом усилие предварительного напряжения во внутренней трубе. Удлиняясь, она разгружает рядом стоящую стойку. После этого наружная труба в сечении разрезки заваривается и в состоянии воспри­нять часть добавочной нагрузки на колонну (стойку) после усиления. Этот способ может применяться также при усилении внецентренно сжатых элементов.

Эффективным способом увеличения жесткости кар­касов промышленных зданий является устройство пред­варительно напряженных тяжей и оттяжек. Однако от­тяжки требуют массивных анкерных устройств, увеличе­ния площади застройки, а также они увеличивают сжи­мающие усилия в колоннах. Более эффективны тяжи, которые крепятся к соседним устойчивым зданиям. На­тяжение таких затяжек осуществляют механическим, электротермическим или комбинированным способом, а контроль эффективности усиления — по уменьшению смещений верхних узлов каркаса при горизонтальных нагрузках.

Повышения жесткости продольных и поперечных рам возможно добиться установкой крестовых диагональ­ных жестких связей, а когда это невозможно, — жест­ких распорок (ригелей) в сочетании с диагональными раскосами.

Рис. 3.39. Усиление предварительно напряженной стойкой:

1 — предварительно напряженная стойка; 2 — сварной шов; 3 — накладки

Эффективный способ увеличения прочности и жест­кости металлических ригелей — подведение под них про­катных или сварных балок с приваркой под нагрузкой в нагретом состоянии. При ограниченных габаритах по­мещений усиливающую балку устанавливают сверху, вскрывают пол и приваривают ее к верхней полке уси­ливаемого ригеля в предварительно напряженном со­стоянии. Усиливающие балки в первом и во втором слу­чаях заводят и жестко закрепляют в узлах рамы.

Повышения несущей способности стропильных балок и ригелей перекрытия возможно добиться устройством сплошного железобетонного настила, жестко связанно­го с верхним поясом балки. В этом случае жесткость ри­геля существенно повышается, и его можно рассматри­вать как тавровую железобетонную балку с жесткой арматурой.

Наиболее часто требуют усиления сжатые стальные элементы. Традиционным способом их усиления являет­ся увеличение сечения приваркой полос, уголков и дру­гих элементов без предварительного напряжения. Однако такой способ усиления обладает существенным недостатком: элементы усиления поздно включаются в ра­боту, приварка этих элементов вызывает в сжатых стойках дополнительные деформации, что снижает эф­фективность усиления. Поэтому традиционные способы усиления применяют, если временная нагрузка на стой­ки составляет не менее 40 % от постоянной и во время выполнения работ по усилению она отсутствует.

Рис. 3.40. Схемы усиления стоек ненапряженными элементами

Усиление стальных стоек ненапряженными элемен­тами осуществляют увеличением их сечения и уменьшением их свободной длины, при этом следует стремиться к максимальному увеличению радиусов инерции сечения (рис. 3.40). При выполнении усиления нагрузка на стой­ке не должна превышать 50-60 % расчетной.

Читайте также:  Творог как правильно готовить

При небольшой гибкости усиливаемого элемента не­обходимо уменьшать эксцентриситет от смещения, а при гибкости l > 80 — увеличивать его устойчивость.

Присоединение элементов усиления осуществляют в основном сваркой. Сварочный прогиб для элементов, которые усиливаются под нагрузкой, является нагру­жающим фактором, поэтому сначала усиливаемый эле­мент приваривают точечной сваркой, а затем наклады­вают основной шов. При этом предпочтение следует отдавать шпоночным (прерывистым) швам, которые уменьшают деформации элементов, сокращают сроки сварочных работ и уменьшают массу наплавленного ме­талла.

Усиление балок.

Усиление металлических балок осуществляют увели­чением сечения, при этом необходимо выполнить их раз­грузку не менее чем на 60 % или установить временные дополнительные опоры. При проектировании усиления необходимо придерживаться следующих технологичес­ких правил: объем сварки должен быть минимальным, сварные швы следует располагать в удобных доступных местах, необходимо избегать потолочной сварки, снача­ла надо усиливать нижний пояс, а затем верхний, что исключает прогиб балки в момент усиления.

Рис. 3.41. Схемы усиления балок симметричными на­кладками

Наиболее простой способ усиления-симметричны­ми накладками (рис. 3.41), однако при этом возникает необходимость в большом объеме потолочной сварки. При большой ширине нижней накладки можно избежать потолочных швов, однако ширина ее не должна превы­шать 506, в противном случае возникает значительная концентрация напряжений по кромкам балки.

Проверку прочности и устойчивости усиленной бал­ки производят как для цельного сечения, так как крити­ческие усилия не зависят от величины напряжений, су­ществовавших до усиления.

Для повышения местной устойчивости локальных участков стенки балки устанавливают на этих участках короткие ребра жесткости, окаймляя их продольными ребрами (рис. 3.42).

Эффективным способом усиления сплошных балок являются натяжные устройства, которые обеспечивают стабильную величину предварительного напряжения, не зависящую от податливости анкеров и вытяжки за­тяжек. Такие способы позволяют регулировать усилие предварительного напряжения в нижнем поясе балки. Один из варианта усиления представлен на рис. 43. Распорные элементы выполняют в виде секторов с гнез­дами, образующих с осью разрезные шарниры, располо­женные между скошенными торцами распираемых балок, натяжное устройство требуемой массы располага­ют внутри колонны. Этот способ наиболее эффективен при усилении подкрановых балок, так как требует ми­нимальных трудовых и материальных затрат.

Усиление ферм.

Усиление стальных ферм осуществляют подведением новых конструкций, введением дополнительных элемен­тов решетки, изменением схемы конструкции и увеличе­нием сечений отдельных элементов. Выбор того или ино­го способа усиления зависит от причин, вызвавших уси­ление стропильных конструкций. Подведение новых конструкций осуществляют в том случае, если другие способы усиления не дают требуе­мого эффекта и если по условиям производства допусти­ма установка дополнительных промежуточных стоек.

Дополнительные элементы решетки вводятся для уменьшения гибкости стержней в плоскости фермы, для усиления верхнего пояса фермы на местный изгиб, а также для увеличения жесткости и несущей способно­сти фермы в целом. Усиление нижнего пояса осуществляют, как правило, увеличением его сечения. Верхний пояс усиливают шпренгельной решеткой. Дополнитель­ную перекрестную решетку устанавливают для повыше­ния несущей способности и жесткости фермы в целом. В этом случае ферма превращается в статически неоп­ределимую систему и возникает опасность перераспре­деления усилий в элементах решетки (растянутые эле­менты испытывают сжимающие усилия, и наоборот). Поэтому иногда возникает необходимость дополнитель­ного усиления отдельных элементов решетки.

Наиболее распространенный характер повреждений стропильных ферм — погнутость стержней решетки, ко­торая достигает 50-70 мм. В этом случае увеличивают сечение решетки или устанавливают предварительно на­пряженные элементы, снижающие искривления элемен­тов решетки.

Существенного увеличения несущей способности фер­мы можно добиться установкой третьего пояса (шпрен­гельной системы) в пределах высоты фермы или (если допускает высота помещения) путем его закрепления в нижних опорных узлах. Такое усиление не требует до­полнительных опор и может выполняться из высоко­прочных канатов (пучков), обеспечивая минимальную материалоемкость усиления. Стойки шпренгельной си­стемы выполняют из жестких профилей.

Разгрузку су­ществующей фермы осуществляют предварительным на­пряжением третьего пояса, поэтому его сечение должно быть достаточным для воспринятая максимальных на­пряжений при полной нагрузке фермы. Усилия в раз­личных элементах конструкции суммируются из усилий, возникающих при предварительном напряжении третье­го пояса, а также усилий, в статически неопределимой усиленной конструкции от всех нагрузок, приложенных после усиления.

Одним из способов усиления ферм является над­стройка висячих (вантовых) систем, к которым подве­шивается усиливаемая конструкция. Этот способ осо­бенно эффективен, если ванты можно подвешивать к ря­дом стоящим более высоким и устойчивым сооружениям.

Усиления ферм можно добиться включением в их работу светоаэрационных фонарей. Наиболее эффекти­вен этот метод при расположении фонарей не по сере­дине пролета, а над колоннами в двух- и многопролет­ных цехах.

Как уже отмечалось, усиления верхнего пояса ферм можно добиться за счет включения 8 его работу желе­зобетонных плит покрытия.

Усиление соединений.

При недостаточной прочности сварных швов их уси­ливают увеличением длины.

Наращивание швов следует производить электрода­ми Э42, Э42А или Э46Т диаметром не более 4 мм при силе тока не более 220 А со скоростью, при которой за один проход размер катета не превышает 8 мм. Для элементов из уголков новые швы следует накладывать, начиная со стороны обушка от края фасовки в направ­лении существующих швов. Сварку последующего шва производят только после охлаждения предыдущего до 100°C. При усилении швов напряжения в усиливаемом элементе не должны превышать 0,8Ry, где Ry-расчет­ное сопротивление стали. Усиление должны производить высококвалифицированные, сварщики не ниже 5-го раз­ряда.

Усиление заклепочных соединений осуществляют вы­сокопрочными болтами с предварительным напряжени­ем. Болты устанавливают от середины узла к краям с помощью тарировочных ключей для измерения крутя­щих моментов. Из-за ослабления старых заклепок при установке новых высокопрочных болтов последние дол­жны быть рассчитаны на воспринятие полной нагрузки.

Из-за различной жесткости сварных и болтовых со­единений усиление последних при помощи сварки не ре­комендуется.

Не нашли то, что искали? Воспользуйтесь поиском:

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
Adblock detector